Abstract

In two-tiered wireless sensor networks (WSNs), relay node placement is one of the key factors impacting the network energy consumption and the system overhead. In this paper, a novel connectivity-aware approximation algorithm for relay node placement in the WSNs is proposed to offer a major step forward in saving system overhead. In particular, a unique local search approximation algorithm (LSAA) is introduced to solve the relay node single cover (RNSC) problem. In this proposed LSAA approach, the sensor nodes are allocated into groups and then a local set cover (SC) for each group is achieved by a local search algorithm. The union set of all the local SCs constitutes a SC of the RNSC problem. The approximation ratio and the time complexity of the LSAA are analyzed by rigorous proof. In addition, the LSAA approach has been extended to solve the relay node double cover problem. Then, a relay location selection algorithm (RLSA) is proposed to utilize the resulting SC from the LSAA in combining RLSA with the minimum spanning tree heuristic to build the high-tier connectivity. As the RLSA searches for a nearest location to the sink node for each relay node, the high-tier network built by the RLSA becomes denser than that by existing works. As a result, the number of added relay nodes for building the connectivity of the high-tier WSN can be significantly saved. Simulation results clearly demonstrate that the proposed LSAA outperforms the approaches reported in literature and the RLSA-based algorithm can noticeably save relay nodes newly deployed for the high-tier connectivity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.