Abstract

We present a phenomenological modeling framework for development. Our purpose is to provide a systematic method for discovering and expressing correlations in experimental data on gene expression and other developmental processes. The modeling framework is based on a connectionist or "neural net" dynamics for biochemical regulators, coupled to "grammatical rules" which describe certain features of the birth, growth, and death of cells, synapses and other biological entities. We outline how spatial geometry can be included, although this part of the model is not complete. As an example of the application of our results to a specific biological system, we show in detail how to derive a rigorously testable model of the network of segmentation genes operating in the blastoderm of Drosophila. To further illustrate our methods, we sketch how they could be applied to two other important developmental processes: cell cycle control and cell-cell induction. We also present a simple biochemical model leading to our assumed connectionist dynamics which shows that the dynamics used is at least compatible with known chemical mechanisms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.