Abstract

A connectionist architecture is developed that can be used for modeling choice probabilities and reaction times in identification tasks. The architecture consists of a feedforward network and a decoding module, and learning is by mean-variance back-propagation, an extension of the standard back-propagation learning algorithm. We suggest that the new learning procedure leads to a better model of human learning in simple identification tasks than does standard back-propagation. Choice probabilities are modeled by the input-output relations of the network and reaction times are modeled by the time taken for the network, particularly the decoding module, to achieve a stable state. In this paper, the model is applied to the identification of unidimensional stimuli; applications to the identification of multidimensional stimuli—visual displays and words—is mentioned and presented in more detail in other papers. The strengths and weaknesses of this connectionist approach vis-a-vis other approaches are discussed

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.