Abstract

The importance of the efforts to bridge the gap between the connectionist and symbolic paradigms of artificial intelligence has been widely recognized. The merging of theory (background knowledge) and data learning (learning from examples) into neural-symbolic systems has indicated that such a learning system is more effective than purely symbolic or purely connectionist systems. Until recently, however, neural-symbolic systems were not able to fully represent, reason, and learn expressive languages other than classical propositional and fragments of first-order logic. In this article, we show that nonclassical logics, in particular propositional temporal logic and combinations of temporal and epistemic (modal) reasoning, can be effectively computed by artificial neural networks. We present the language of a connectionist temporal logic of knowledge (CTLK). We then present a temporal algorithm that translates CTLK theories into ensembles of neural networks and prove that the translation is correct. Finally, we apply CTLK to the muddy children puzzle, which has been widely used as a test-bed for distributed knowledge representation. We provide a complete solution to the puzzle with the use of simple neural networks, capable of reasoning about knowledge evolution in time and of knowledge acquisition through learning.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.