Abstract
Although the connectionist approach has lead to elegant solutions to a number of problems in cognitive science and artificial intelligence, its suitability for dealing with problems in knowledge representation and inference has often been questioned. This paper partly answers this criticism by demonstrating that effective solutions to certain problems in knowledge representation and limited inference can be found by adopting a connectionist approach. The paper presents a connectionist realization of semantic networks, that is, it describes how knowledge about concepts, their properties, and the hierarchical relationship between them may be encoded as an interpreter-free massively parallel network of simple processing elements that can solve an interesting class of inheritance and recognition problems extremely fast—in time proportional to the depth of the conceptual hierarchy. The connectionist realization is based on an evidential formulation that leads to principled solutions to the problems of exceptions and conflicting multiple inheritance situations during inheritance, and the best-match or partial-match computation during recognition. The paper also identifies constraints that must be satisfied by the conceptual structure in order to arrive at an efficient parallel realization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.