Abstract

In its first three months of operations, the Fermi Gamma-Ray Observatory has detected approximately one quarter of the radio-flux-limited MOJAVE sample of bright flat-spectrum active galactic nuclei (AGNs) at energies above 100 MeV. We have investigated the apparent parsec-scale jet speeds of 26 MOJAVE AGNs measured by the Very Long Baseline Array (VLBA) that are in the LAT bright AGN sample (LBAS). We find that the gamma-ray bright quasars have faster jets on average than the non-LBAS quasars, with a median of 15 c, and values ranging up to 34 c. The LBAS AGNs in which the LAT has detected significant gamma-ray flux variability generally have faster jets than the nonvariable ones. These findings are in overall agreement with earlier results based on nonuniform EGRET data which suggested that gamma-ray bright AGNs have preferentially higher Doppler boosting factors than other blazar jets. However, the relatively low LAT detection rates for the full MOJAVE sample (24%) and previously known MOJAVE EGRET-detected blazars (43%) imply that Doppler boosting is not the sole factor that determines whether a particular AGN is bright at gamma-ray energies. The slower apparent jet speeds of LBAS BL Lac objects and their higher overall LAT detection rate as compared to quasars suggest that the former are being detected by Fermi because of their higher intrinsic (unbeamed) gamma-ray to radio luminosity ratios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.