Abstract

The precise and effective detection of neurotransmitters (NTs) is crucial for clinical investigation of neuronal processes, and timely monitoring of NT-related chronic diseases. However, sensitive detection of specific NT with unprecedented selectivity is highly challenging due to similarities in chemical and electronic structures of various interfering neurochemicals. Herein, an anionic conjugated polyelectrolyte Poly[(9,9-bis(4'-sulfonatobutyl)fluorene-co-alt-1,4-phenylene) sodium], PFPS was rationally designed and synthesized for amplified detection and point-of-care (PoC) determination of monoamine neurotransmitter, serotonin (5-Hydroxy tryptamine or 5-HT, also diagnostic biomarker of carcinoid tumor) in human blood plasma. The PFPS displayed a remarkable sensing response with an exceptionally high fluorescence quenching constant of 1.14×105 M-1 and an ultralow detection limit of 0.67 μM or 0.142 ppm, much below the clinical range. Furthermore, a smartphone-enabled portable platform was constructed for real-time onsite detection of 5-HT by quantification of visual fluorescence response of PFPS into RGB values using a color recognizer android application. The smartphone platform could be readily applied for convenient, non-invasive PoC testing of 5-HT levels in complex biological fluids accurately and is expected to revolutionize clinical diagnosis and personalized health care devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.