Abstract

Structural modularity of polymer frameworks is a key advantage of covalent organic polymers, however, only C, N, O, Si, and S have found their way into their building blocks so far. Here, the toolbox available to polymer and materials chemists is expanded by one additional nonmetal, phosphorus. Starting with a building block that contains a λ5‐phosphinine (C5P) moiety, a number of polymerization protocols are evaluated, finally obtaining a π‐conjugated, covalent phosphinine‐based framework (CPF‐1) through Suzuki–Miyaura coupling. CPF‐1 is a weakly porous polymer glass (72.4 m2 g−1 BET at 77 K) with green fluorescence (λ max=546 nm) and extremely high thermal stability. The polymer catalyzes hydrogen evolution from water under UV and visible light irradiation without the need for additional co‐catalyst at a rate of 33.3 μmol h−1 g−1. These results demonstrate for the first time the incorporation of the phosphinine motif into a complex polymer framework. Phosphinine‐based frameworks show promising electronic and optical properties, which might spark future interest in their applications in light‐emitting devices and heterogeneous catalysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.