Abstract

Different phenomena such as complex flow field and heat release by combustion are involved in the heat transfer process in combustion chambers. This paper concerns prediction of heat load and wail temperature in a gas turbine combustor by taking different phenomena into account. Two dimensional axi-symmetric models were used to model the flow field and combustion in a premised combustor with two different cooling schemes. The k-e turbulence model and Eddy Dissipation Concept (EDC) were used for modeling turbulent flow and combustion, respectively. In the modeling of heat transfer through the walls, a conjugate heat transfer formulation was applied. The temperatures calculated by the models were compared with experimental data. The results showed that although worse agreement was found in some parts, however generally the trends of the temperature variations predicted very well. In addition, radiative heat transfer has been included in the study. The results showed that radiative heat transfer in simple and ribbed duct cooling schemes can increase the average inner wall temperature by to 33 and 40 K, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.