Abstract

Many real-world applications can usually be modeled as convex quadratic problems. In the present paper, we want to tackle a specific class of quadratic programs having a dense Hessian matrix and a structured feasible set. We hence carefully analyze a simplicial decomposition like algorithmic framework that handles those problems in an effective way. We introduce a new master solver, called Adaptive Conjugate Direction Method, and embed it in our framework. We also analyze the interaction of some techniques for speeding up the solution of the pricing problem. We report extensive numerical experiments based on a benchmark of almost 1400 instances from specific and generic quadratic problems. We show the efficiency and robustness of the method when compared to a commercial solver (Cplex).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.