Abstract
The famous Frank–Wolfe theorem ensures attainability of the optimal value for quadratic objective functions over a (possibly unbounded) polyhedron if the feasible values are bounded. This theorem does not hold in general for conic programs where linear constraints are replaced by more general convex constraints like positive semidefiniteness or copositivity conditions, despite the fact that the objective can be even linear. This paper studies exact penalizations of (classical) quadratic programs, i.e., optimization of quadratic functions over a polyhedron, and applies the results to establish a Frank–Wolfe-type theorem for the primal-dual pair of a class of conic programs that frequently arises in applications. One result is that uniqueness of the solution of the primal ensures dual attainability, i.e., existence of the solution of the dual.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.