Abstract
In [K2] Moishezon twistor spaces over the connected sum \(n{\mathbb{CP}}^2\) (\(n\geq 4\)), which do not contain effective divisors of degree one, were constructed as deformations of the twistor spaces introduced in [LeB]. We study their structure for \(n\geq 4\) by constructing a modification which is a conic bundle over \({\mathbb P}^2\). We show that they are rational. In case n = 4 we give explicit equations for such conic bundles and use them to construct explicit birational maps between these conic bundles and \({\mathbb P}^3\).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.