Abstract
Abstract This paper presents a conforming augmented finite element method (C-AFEM) that can account for arbitrary cracking in solids with similar accuracy of other conforming methods, but with a significantly improved numerical efficiency of about ten times. We show that the numerical gains are mainly due to our proposed new solving procedure, which involves solving a local problem for crack propagation and a global problem for structural equilibrium, through a tightly coupled two-step process. Through several numerical benchmarking examples, we further demonstrate that the C-AFEM is more accurate and mesh insensitive when compared with the original A-FEM, and both C-AFEM and A-FEM are much more robust and efficient than other parallel methods including the extended finite element method (XFEM)/generalized finite element (GFEM) and the conforming embedded discontinuity method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.