Abstract

Guanine-rich DNA and RNA sequences can fold into unique structures known as G-quadruplexes. The structures of G-quadruplexes can be divided into several classes, depending on the parallel or antiparallel nature of the strands and the number of G-rich tracts present in an oligonucleotide. Oligonucleotides with single tracts of guanines form intermolecular parallel tetrameric G-quadruplexes. Oligonucleotides with two tracts of guanosines separated by two or more bases can form both intermolecular antiparallel fold-back dimeric and parallel tetrameric G-quadruplexes, and those with four tracts of guanosines can form both intramolecular parallel and antiparallel structures. Intramolecular G-qaudruplexes can fold into several folding topologies including antiparallel crossover basket, antiparallel chair, and parallel propeller. The ability to control the folding of G-quadruplexes would allow the physical, biochemical, and biological properties of these various folding topologies to be studied. Previously, the known methods to control the folding topology of G-quadruplexes included changing the buffer by varying the mono- and divalent cations that are present, and by changing the DNA sequence. Because the glycosidic bonds in the G-quartets of G-quadruplexes with parallel strands are in the anti conformation, we reasoned that incorporation of nucleoside analogues that prefer the anti conformation of the glycosidic bond into G-rich sequences would increase the preference for parallel G-quadruplex formation. As predicted, by positioning the conformationally constrained nucleotide analogue 2'-O-4'-C-methylene-linked ribonucleotide into specific positions of a DNA G-quadruplex we were able to shift the thermodynamically favored structure of a G-quadruplex from an antiparallel to a parallel structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call