Abstract
mTORC1 is a central hub that integrates environmental cues, such as cellular stresses and nutrient availability to modulate metabolism and cellular responses. Recently, SLC38A9, a lysosomal amino acid transporter, emerged as a sensor for luminal arginine and as an activator of mTORC1. The amino acid-mediated activation of mTORC1 is regulated by the N-terminal domain of SLC38A9. Here, we determined the crystal structure of zebrafish SLC38A9 (drSLC38A9) and found the N-terminal fragment inserted deep within the transporter, bound in the substrate-binding pocket where normally arginine would bind. This represents a significant conformational change of the N-terminal domain (N-plug) when compared with our recent arginine-bound structure of drSLC38A9. We propose a ball-and-chain model for mTORC1 activation, where N-plug insertion and Rag GTPase binding with SLC38A9 is regulated by luminal arginine levels. This work provides important insights into nutrient sensing by SLC38A9 to activate the mTORC1 pathways in response to dietary amino acids.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.