Abstract

The size of von Willebrand factor (VWF), controlled by ADAMTS13-dependent proteolysis, is associated with its hemostatic activity. Many factors regulate ADAMTS13-dependent VWF proteolysis through their interaction with VWF. These include coagulation factor VIII, platelet glycoprotein 1bα, and heparin sulfate, which accelerate the cleavage of VWF. Conversely, thrombospondin-1 decreases the rate of VWF proteolysis by ADAMTS13 by competing with ADAMTS13 for the A3 domain of VWF. To investigate whether murine monoclonal antibodies (mAbs) against human VWF affect the susceptibility of VWF to proteolysis by ADAMTS13 in vitro, eight mAbs to different domains of human VWF were used to evaluate the effects on VWF cleavage by ADAMTS13 under fluid shear stress and static/denaturing conditions. Additionally, the epitope of anti-VWF mAb (SZ34) was mapped using recombinant proteins in combination with enzyme-linked immunosorbent assay and Western blot analysis. The results indicate that mAb SZ34 inhibited proteolytic cleavage of VWF by ADAMTS13 in a concentration-dependent manner under fluid shear stress, but not under static/denaturing conditions. The binding epitope of SZ34 mAb is located between A1555 and G1595 in the central A2 domain of VWF. These data show that an anti-VWF mAb against the VWF-A2 domain (A1555-G1595) reduces the proteolytic cleavage of VWF by ADAMTS13 under shear stress, suggesting the role of this region in interaction with ADAMTS13.

Highlights

  • Plasma von Willebrand factor (VWF) is a large multimeric glycoprotein that interacts with platelet surface receptors and is crucial for normal hemostasis

  • We found that SZ34, a monoclonal antibodies (mAbs) against the A2 domain of human VWF, reduces the susceptibility of VWF to proteolysis by ADAMTS13 under fluid shear stress

  • The epitope mapping shows that the epitope of SZ-34 is located within the A1555-G1595 region of the A2 domain of native VWF, suggesting that this region may directly interact with ADAMTS13

Read more

Summary

Introduction

Plasma von Willebrand factor (VWF) is a large multimeric glycoprotein that interacts with platelet surface receptors and is crucial for normal hemostasis. The importance of VWF proteolysis by ADAMTS13 is demonstrated in two syndromes, i.e., thrombotic thrombocytopenic purpura and von Willebrand disease type 2A. The former is associated with the deficiency of plasma ADAMTS13 activity, either due to congenital mutations or acquired autoantibodies [5,6,7]. The latter is mostly caused by mutations in the A2 domain of VWF that lead to the increased proteolysis of VWF multimers by ADAMTS13 [8,9]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call