Abstract
Robotic planning in real-world scenarios typically requires joint optimization of logic and continuous variables. A core challenge to combine the strengths of logic planners and continuous solvers is the design of an efficient interface that informs the logical search about continuous infeasibilities. In this paper we present a novel iterative algorithm that connects logic planning with nonlinear optimization through a bidirectional interface, achieved by the detection of minimal subsets of nonlinear constraints that are infeasible. The algorithm continuously builds a database of graphs that represent (in)feasible subsets of continuous variables and constraints, and encodes this knowledge in the logical description. As a foundation for this algorithm, we introduce Planning with Nonlinear Transition Constraints (PNTC), a novel planning formulation that clarifies the exact assumptions our algorithm requires and can be applied to model Task and Motion Planning (TAMP) efficiently. Our experimental results show that our framework significantly outperforms alternative optimization-based approaches for TAMP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.