Abstract

A combination of the dispersive liquid-liquid microextraction (DLLME) method based on the total vaporization procedure and cooling-assisted organic solvent-coated thin film microextraction (TFME) was applied for extracting chlorpyrifos (as the model compound). Based on the high thermal conductivity, a nickel foam thin film with the dimensions of 5.0 mm × 5.0 mm was used as a substrate for holding the organic solvent. Supporting thin film by organic solvent increases the thickness and contact area of the film relative to TFME or single drop microextraction (SDME) alone, resulting in a dramatic increase in the extraction efficiency. To protect the organic solvent and enhance the analyte distribution coefficient between the film and the vapor phase, a cooling system was applied. The proposed design was effective due to condensing the target analyte only on the uniform cooled thin film and not on the other regions in the extraction chamber. A corona discharge ionization source-ion mobility spectrometer was employed to identify the analyte. After optimizing the effective parameters, the limits of quantification (S/N = 10) and detection (S/N = 3) were calculated 0.1 and 0.03 μg L−1, respectively, and the dynamic range was measured between 0.1 and 7.0 μg L−1, with a determination coefficient of 0.9997. For three concentration levels of 0.1, 3.0, and 7.0 μg L−1, the relative standard deviations (n = 3) as the repeatability index were to be 6 %, 5 %, and 4 % for intra-day and 9 %, 6 %, and 5 % for inter-day, respectively. The enrichment factor was also calculated to be 3630 for the analyte concentration of 1.0 μg L−1. Well water, potato, and agricultural wastewater were analyzed as the real samples and the relative recovery values were measured between 92 % and 99 %. The accuracy of the proposed technique was validated by the European Standards EN 12393 method. In this approach, two steps of analyte extraction (DLLME and TFME) were used consecutively, resulting in better preconcentration and reduced matrix interference during cleaning-up.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.