Abstract

This paper presents an ultra-low power, high sensitivity configurable CMOS fluorescence sensing front-end for implantable biosensors at single-cell level measurements. The front-end is configurable by a set of switches and consists of three integrated photodiodes (PD), three transimpedance amplifiers (TIA) for detecting a current range between 1 pA up to 10 mA. Also, an ambient light canceling technique is proposed to make the sensor operate under different environmental conditions. The proposed front-end could be configured for ultra-low light detection or ultra-low power consumption. The circuit is designed and fabricated in a 0.35 µm standard CMOS technology, and the measurement results are presented. The minimum integrated input-referred current noise is measured as 1.07 pA with the total average power consumption of 61.8 µW at an excitation frequency of 80 Hz. For ultra-low-power configuration, the front-end has an average power consumption of 119 nW and input integrated current noise of 210 pA at an excitation frequency of 20 kHz.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call