Abstract

Keyword spotting (KWS) plays a crucial role in human–machine interactions involving smart devices. In recent years, temporal convolutional networks (TCNs) have performed outstandingly with less computational complexity, in comparison with classical convolutional neural network (CNN) methods. However, it remains challenging to achieve a trade-off between a small-footprint model and high accuracy for the edge deployment of the KWS system. In this article, we propose a small-footprint model based on a modified temporal efficient neural network (TENet) and a simplified mel-frequency cepstrum coefficient (MFCC) algorithm. With the batch-norm folding and int8 quantization of the network, our model achieves the accuracy of 95.36% on Google Speech Command Dataset (GSCD) with only 18 K parameters and 461 K multiplications. Furthermore, following a hardware/model co-design approach, we propose an optimized dataflow and a configurable hardware architecture for TENet inference. The proposed accelerator implemented on Xilinx zynq 7z020 achieves an energy efficiency of 25.6 GOPS/W and reduces the runtime by 3.1× compared with state-of-the-art work.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.