Abstract

The effectiveness of most of the existing decomposition-based multi-objective evolutionary algorithms (MOEAs) is yet to be heightened for many-objective optimization problems (MaOPs). In this paper, a cone decomposition evolutionary algorithm (CDEA) is proposed to extend decomposition-based MOEAs to MaOPs more effectively. In CDEA, a cone decomposition strategy is introduced to overcome potential troubles in decomposition-based MOEAs by decomposing a MaOP into several subproblems and associating each of them with a unique cone subregion. Then, a scalarization approach of adaptive direction penalized distance is designed to emphasize boundary subproblems and guarantee the full spread of the final obtained front. The proposed algorithm is compared with three decomposition-based MOEAs on unconstrained benchmark MaOPs with 5 to 10 objectives. Empirical results demonstrate the superior solution quality of CDEA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.