Abstract

The practical application of lithium-sulfur batteries with high theoretical energy density and readily available cathode active materials is hampered by problems such as sulfur insulation, dramatic volume changes, and polysulfide shuttling. The targeted development of novel binders is the most industrialized solution to the problem of sulfur cathodes. Herein, an aqueous conductive emulsion binder with the sulfonate-containing hard elastic copolymer core and the conjugate polymer shell, which is capable of forming a bicontinuous mesoscopic interpenetrating polymer network, is synthesized and investigated. Not only can the elastic skeleton formed by the copolymer bind the active substance under drastic volume changes, but also the rich ester and cyanide groups in it can effectively capture lithium polysulfide. Meanwhile, the conducting skeleton consisting of poly(3,4-ethylenedioxythiophene) both provides the additional charge conduction pathways and acts as the redox intermediates, significantly accelerating the kinetic process of lithium polysulfide conversion. Based on the synergistic effect of the above mechanisms, the use of the prepared binder on the sulfur carbon cathode significantly improves the rate performance and cycle stability of lithium sulfur batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.