Abstract

Conductive MOFs could exhibit full potential as integrated electrode materials for supercapacitors without interference from additional conductive additives. Here we report an anionic Co-MOF cage with zeolite framework, which was balanced by the redox-active guest [Co(H2O)6]2+ and protonated [(CH3)2NH2]2+ ions. Benefit from the unique ion skeleton structure, Co-MOF exhibits a conductivity higher than most of reported MOFs with the value of 1.42 × 10-3 S/cm, which can be directly fabricated as electrode for supercapacitors. A maximum specific capacitance of 236.2 F/g can be achieved at a current density of 1 A/g of Co-MOF. Additionally, the electric performance and morphology of this Co-MOF can be modified by cetyltrimethylammonium bromide (CTAB) and the maximum specific capacitance could increase up to 334 F/g at 1 A/g when the ratio of ligand and CTAB is 1:6 (Co-MOF-6). Furthermore, the specific capacitance can retain at 64.04% and 77.92% of the initial value after 3000 cycles of Co-MOF and Co-CTAB-6, respectively. Obviously, the addition of CTAB further improves both capacitance and cycle stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.