Abstract

For the first time, materials were synthesized at a very low temperature, below . The influence of synthesis parameters, such as temperature and time of reaction, on the structure and conductivity of the material was investigated. It was shown that these materials contain structural defects, such as stacking faults and lithium vacancies, which lead to a good electronic conductivity of these materials as compared to classical high-temperature materials. The time and temperature of reaction decrease the amounts of stacking faults in the materials. However, lithium intercalation can occur during a long-time synthesis, leading to a decrease in conductivity of the material. If process parameters are conveniently chosen, a material with a conductivity of around can be obtained and used with success as a conductive additive in positive electrodes of alkaline batteries. The major advantage of this new additive is that prevents the loss of capacity of alkaline cells at low voltage, in the whole potential window of the positive electrode in alkaline batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.