Abstract
Because of the existence of irrelevant, redundant, and noisy attributes in large datasets, the accuracy of a classification model has degraded. Hence, feature selection is a necessary pre-processing stage to select the important features that may considerably increase the efficiency of underlying classification algorithms. As a popular metaheuristic algorithm, particle swarm optimisation has successfully applied to various feature selection approaches. Nevertheless, particle swarm optimisation tends to suffer from immature convergence and low convergence rate. Besides, the imbalance between exploration and exploitation is another key issue that can significantly affect the performance of particle swarm optimisation. In this paper, a conditional opposition-based particle swarm optimisation is proposed and used to develop a wrapper feature selection. Two schemes, namely opposition-based learning and conditional strategy are introduced to enhance the performance of the particle swarm optimisation. Twenty-four benchmark datasets are used to validate the performance of the proposed approach. Furthermore, nine metaheuristics are chosen for performance verification. The findings show the supremacy of the proposed approach not only in obtaining high prediction accuracy but also in small feature sizes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.