Abstract

Condition monitoring of natural gas distribution networks is a fundamental prerequisite for evaluating safety of the operation during the lifetime of the system. Due to the high level of uncertainty in the observed data, predicting the operational reliability of the networks is complicated. Moreover, there is a fluctuation in most of the monitoring data in different time scales, as most of the derived data tend to be of non-stationary nature and are complex to model or forecast. Therefore, a more realistic data driven approach for developing a reliability framework needs to be considered. This paper aims at proposing a probabilistic model to predict the complexity of the non-stationary behaviour in monitoring data. It also aims at developing a novel framework for the time dependent reliability assessment of a natural gas distribution system using condition-monitoring data. To this end a methodology by integrating Empirical Mode Decomposition (EMD) and Hierarchical Bayesian Model (HBM) is developed. The advantages of the methodology are demonstrated through a case study of a Natural Gas Regulating and Metering Station operating in Italy. Based on pressure data acquired from the case study, the model is able to predict overpressure thus directly avoiding unnecessary maintenance and safety consequences.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.