Abstract

An innovative concurrent multiscale model is proposed for simulating transverse crack propagation in fiber-reinforced composite materials, based on a domain decomposition technique equipped with an adaptive zooming-in strategy. Under general loading, the crack path is not a priori known, as both fiber/matrix interface debonding and matrix cracking are involved. Therefore, a suitable crack path tracking strategy is proposed, based a moving mesh approach coupled with a shape optimization method. A number of numerical experiments have been carried out for assessing the validity of the proposed model, with reference to the complete failure analysis of a single notched fiber-reinforced composite beam subjected to both mode-I and mixed-mode crack propagation conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.