Abstract

The number of limit cycles for three dimensional Lotka–Volterra systems is an open problem. Recently, Yu et al. (2016) constructed some examples with the possibility of the existence of four limit cycles. Unfortunately, multiple limit cycles are not visible by numerical simulations, because all of them are very close to the interior equilibrium and extremely small. We present a concrete example with multiple limit cycles for three dimensional Lotka–Volterra systems which we can confirm them by numerical simulations. First we prepare the modified formula to compute coefficients of the normal form for the generalized Hopf bifurcation. Applying this formula to three dimensional Lotka–Volterra competitive systems with the aid of the computer algebra system, we derive the critical parameter values explicitly such that the interior equilibrium is exactly an unstable weak focus. Also we show that the heteroclinic cycle on the boundary of R+3 is repelling. This implies that there exists a stable limit cycle by the Poincare–Bendixson theorem. Then, adding some suitable perturbations to parameters, we generate additional two limit cycles near the interior equilibrium by the generalized Hopf bifurcation. Finally we confirm that there exist three limit cycles by numerical simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.