Abstract

We review the basic principles of Quantum Field Theory (QFT) in a brief but comprehensive introduction to the foundations of QFT. The principles of QFT are introduced in canonical and covariant formalisms. The problem of ultraviolet (UV) divergences and its renormalization is analyzed in the canonical formalism. As an application, we review the roots of Casimir effect. For simplicity, we focus on the scalar field theory but the generalization for fermion fields is straightforward. However, the quantization of gauge fields require extra techniques which are beyond the scope of this paper. The special cases of free field theories and conformal invariant theories in lower space-time dimensions illustrate the relevance of the foundations of the theory. Finally, a short introduction to functional integrals and perturbation theory in the Euclidean formalism is included in the last section.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.