Abstract

AbstractThis paper presents an overview of an advanced, conceptual wing-box weight estimation and sizing model for transport aircraft. The model is based on linear thin-walled beam theory, where the wing-box is modelled as a simple, swept tapered multi-element beam. It consists of three coupled modules, namely sizing, aeroelastic analysis, and weight prediction. The sizing module performs generic wing-box sizing using a multi-element strategy. Three design cases are considered for each wing-box element. The aeroelastic analysis module accounts for static aeroelastic requirements and estimates their impact on the wing-box sizing. The weight prediction module estimates the wing-box weight based on the sizing process, including static aeroelastic requirements. The breakdown of the models into modules increases its flexibility for future enhancements to cover complex wing geometries and advanced aerospace materials. The model has been validated using five different transport aircraft. It has shown to be sufficiently robust, yielding an error bandwidth of ±3%, an average error estimate of -0·2%, and a standard error estimate of 1·5%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.