Abstract

In a system containing nanoporous materials and liquids, the well-known thermo-capillary effect can be amplified by the ultralarge specific surface area of the nanopores. With appropriate temperature change, the relative wetting–dewetting transition can cause the liquid to flow in or out of the nanopores, and part of the thermal energy is converted to significant mechanical output. A conceptual design of such a thermal actuation/energy conversion/storage system is investigated in this paper, whose working mechanism, i.e. the thermally dependent infiltration behaviors of liquids into nanopores, is analyzed using molecular dynamics simulations. The fundamental molecular characteristics, including the density profile, contact angle, and surface tension of the confined liquid molecules, are examined in considerable detail. The influences of pore size, solid phase and liquid species are elucidated, which couple with the thermal effect. The energy density, power density, and efficiency of the thermal actuation system are evaluated. An infiltration experiment on a zeolite/water system is performed to qualitatively validate these findings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.