Abstract

Metal-thermoplastic hybrid structures have proven their effectiveness to achieve lightweight design concepts in both primary and secondary structural components of advanced aircraft. However, the drastic differences in physical and chemical properties between metal and thermoplastic make it challenging to fabricate high-reliability hybrid structures. Here, a simple and universal strategy to obtain strong hybrid structures thermoplastics is reported by regulating the bonding behavior at metal/thermoplastic interfaces. To achieve such, we first researched and uncovered the bonding mechanism at metal/thermoplastic interfaces by experimental methods and density functional theory (DFT) calculations. The results suggest that the interfacial covalency, which is formed due to the interfacial reaction between high-electronegativity elements of thermoplastics and metallic elements at metal surfaces, dominates the interfacial bonding interaction of metal-thermoplastic hybrid structures. The differences in electronegativity and atomic size between bonding atoms influence the covalent-bond strength and finally control the interfacial reliability of hybrid structures. Based on our covalent-bonding mechanism, the carboxyl functional group (COOH) is specifically grafted on polyetheretherketone (PEEK) by plasma polymerization to increase the density and strength of interfacial covalency and thus fabricate high-reliability hybrid structures between PEEK and A6061-T6 aluminum alloy. Current work provides an in-depth understanding of the bonding mechanism at metal-thermoplastics interfaces, which opens a fascinating direction toward high-reliability metal-thermoplastic hybrid structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.