Abstract
High demand for intensive care unit (ICU) services and limited bed availability have prompted hospitals to address capacity planning challenges. Simulation modeling can examine ICU bed assignment policies, accounting for patient acuity, to reduce ICU admission delays. To provide a framework for data-driven modeling of ICU patient flow, identify key measurable outcomes, and present illustrative analysis demonstrating the impact of various bed allocation scenarios on outcomes. A description of key inputs for constructing a queuing model was outlined, and an illustrative simulation model was developed to reflect current triage protocol within the medical ICU and step-down unit (SDU) at a single tertiary-care hospital. Patient acuity, arrival rate, and unit length of stay, consisting of a "service time" and "time to transfer," were estimated from 12 months of retrospective data (n = 2,710 adult patients) for 36 ICU and 15 SDU staffed beds. Patient priority was based on acuity and whether the patient originated in the emergency department. The model simulated the following hypothetical scenarios: (1) varied ICU/SDU sizes, (2) reserved ICU beds as a triage strategy, (3) lower targets for time to transfer out of the ICU, and (4) ICU expansion by up to four beds. Outcomes included ICU admission wait times and unit occupancy. With current bed allocation, simulated wait time averaged 1.13 (SD, 1.39) hours. Reallocating all SDU beds as ICU decreased overall wait times by 7.2% to 1.06 (SD, 1.39) hours and increased bed occupancy from 80 to 84%. Reserving the last available bed for acute patients reduced wait times for acute patients from 0.84 (SD, 1.12) to 0.31 (SD, 0.30) hours, but tripled subacute patients' wait times from 1.39 (SD, 1.81) to 4.27 (SD, 5.44) hours. Setting transfer times to wards for all ICU/SDU patients to 1 hour decreased wait times for incoming ICU patients, comparable to building one to two additional ICU beds. Hospital queuing and simulation modeling with empiric data inputs can evaluate how changes in ICU bed assignment could impact unit occupancy levels and patient wait times. Trade-offs associated with dedicating resources for acute patients versus expanding capacity for all patients can be examined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.