Abstract
RNA sequencing (RNA-seq) is widely used to study gene-, transcript-, or exon expression. To quantify the expression level, millions of short sequenced reads need to be mapped back to a reference genome or transcriptome. Read mapping makes it possible to find a location to which a read is identical or similar. Based upon this alignment, expression summaries, that is, read counts are generated. However, reads may be matched to multiple locations. Such ambiguously mapped reads are often ignored in the analysis, which is a potential loss of information and may cause bias in expression estimation. We present the general principles underlying multiread allocation and unbiased estimation of the expression level of genes, exons, or transcripts in the presence of multiple mapped reads. The underlying principles are derived from a theoretical concept that identifies important sources of information such as the number of uniquely mapped reads, the total target length, and the length of the shared target regions. We show with simulation studies that methods incorporating some or all of the aforementioned sources of information estimate the expression levels of genes, exons, and/or transcripts with a higher precision and accuracy than methods that do not use this information. We identify important sources of information that should be taken into account by methods that estimate the abundance of genes, exons, and/or transcripts to achieve good precision and accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.