Abstract

Residual stress is a major problem in metal parts fabrication with the direct laser deposition (DLD) process due to severe temperature gradient around a molten pool. A three-dimensional finite element analysis (FEA) model with a simplified substrate clamping fixture modeling method is proposed, validated, and then implemented with a novel DLD heat input strategy in Ti-6Al-4V thin-wall structure fabrication, which was applied with multiple beam shapes, including a super-Gaussian beam, Gaussian beam, and inverse-Gaussian beam, to reduce residual stress in the final part. A regression model of the heat input and final part residual stress was obtained via a three-factor two-level full factorial design. An optimized heat input strategy was achieved based on response surface contour plots of the regression model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.