Abstract

Importance of polarisation measurement of X-rays from celestial sources has been realized for long time. Such measurements can provide unique opportunity to study the behaviour of matter and radiation under extreme magnetic and gravitational fields. However sensitivity of the X-ray polarimeters has always been an issue and as a result no X-ray polarization measurement has been flown in last three decades. The situation is expected to change in near future with launch of GEMS, but these polarisation measurements will be limited to energies below 10KeV. On the other hand most of the X-ray sources are expected to have higher degree of polarisation at higher energies. With the advent of high energy focussing telescopes (e.g. NuSTAR, ASTRO-H), it is now possible to design a focal plane Compton polarimeter which can be sensitive upto 80KeV. However, X-ray polarisation measurement is extremely photon hungry. Therefore, a dedicated X-ray polarimeter always has lower sensitivity when compared to any other type of X-ray detector for equal collecting area and time. In this context, we explore a new design of hard X-ray focal plane detector which can provide simultaneous measurements of X-ray polarisation measurements along with high resolution X-ray spectroscopy as well as timing. This design employs a sandwich of a 0.5mm thick Si detector and 10mm thick plastic detector which is surrounded by a cylindrical array of scintillator detectors. Here we present results of detailed Geant4 simulations for estimating sensitivity of this configuration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call