Abstract

A centerpiece of dynamical systems is comparison by an equivalence relationship called topological conjugacy. We present details of how a method to produce conjugacy functions based on a functional fixed point iteration scheme can be generalized to compare dynamical systems that are not conjugate. When applied to nonconjugate dynamical systems, we show that the fixed-point iteration scheme still has a limit point, which is a function we now call a "commuter"-a nonhomeomorphic change of coordinates translating between dissimilar systems. This translation is natural to the concepts of dynamical systems in that it matches the systems within the language of their orbit structures, meaning that orbits must be matched to orbits by some commuter function. We introduce methods to compare nonequivalent systems by quantifying how much the commuter function fails to be a homeomorphism, an approach that gives more respect to the dynamics than the traditional comparisons based on normed linear spaces, such as L(2). Our discussion addresses a fundamental issue-how does one make principled statements of the degree to which a "toy model" might be representative of a more complicated system?

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.