Abstract

A new concept of smoothed finite element method (S-FEM) using 10-node tetrahedral (T10) elements, CS-FEM-T10, is proposed. CS-FEM-T10 is a kind of cell-based S-FEM (CS-FEM) and thus it smooths the strain only within each T10 element. Unlike the other types of S-FEMs [node-based S-FEM (NS-FEM), edge-based S-FEM (ES-FEM), and face-based S-FEM (FS-FEM)], CS-FEM can be implemented in general finite element (FE) codes as a piece of the element library. Therefore, CS-FEM-T10 is also compatible with general FE codes as a T10 element. A concrete example of CS-FEM-T10 named SelectiveCS-FEM-T10 is introduced for large deformation problems of nearly incompressible solids. SelectiveCS-FEM-T10 subdivides each T10 element into 12 four-node tetrahedral (T4) subelements with an additional dummy node at the element center. Two types of strain smoothing are conducted for the deviatoric and hydrostatic stress evaluations and the selective reduced integration (SRI) technique is utilized for the stress integration. As a result, SelectiveCS-FEM-T10 avoids the shear/volumetric locking, pressure checkerboarding, and reaction force oscillation in nearly incompressible solids. In addition, SelectiveCS-FEM-T10 has a relatively long-lasting property in large deformation problems. A few examples of large deformation analyses of a hyperelastic material confirm the good accuracy and robustness of SelectiveCS-FEM-T10. Moreover, an implementation of SelectiveCS-FEM-T10 in the FE code ABAQUS as a user-defined element (UEL) is conducted and its capability is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.