Abstract

Coping with uncertain knowledge and changing beliefs is essential for reasoning in dynamic environments. We generalize an approach to adjust probabilistic belief states by use of the relative entropy in a propositional setting to relational languages, leading to a concept for the evolution of relational probabilistic belief states. As a second contribution of this paper, we present a method to compute the corresponding belief state changes by considering a dual problem and present first application and experimental results. The computed belief state usually factorizes and we explain how the factorization can be exploited to store the belief state more compactly and to simplify its computation by exploiting equivalences of worlds. Finally, we present results on the computational complexity of determining equivalence classes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.