Abstract
The architecture concepts and aggressive science objectives for the next phases of Mars exploration will require landed masses an order of magnitude or greater than any Mars mission previously planned or flown. Additional studies have shown the requirements for missions more ambitious than the 2009 Mars Science Laboratory (∼900 kg payload mass) to extend beyond the capabilities of Viking-heritage entry, descent, and landing (EDL) technologies, namely blunt-body aeroshells, supersonic disk-gap-band parachutes, and existing TPS materials. This study details a concept for Mars entry, descent, and landing capable of delivering a 20 t payload within 1 km of a target landing site at 0 km MOLA. The concept presented here explores potentially enabling EDL technologies for the continued robotic and eventual human exploration of Mars, moving beyond the Viking-heritage systems relied upon for the past 30 years of Mars exploration. These technologies address the challenges of hypersonic guidance, supersonic deceleration, precision landing, and surface hazard avoidance. Without support for the development of these enabling technologies in the near term, the timeline for the successful advanced exploration of Mars will likely extend indefinitely.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.