Abstract

Recent technical and strategical developments have increased the survival chances for avalanche victims. Still hundreds of people, primarily recreationists, get caught and buried by snow avalanches every year. About 100 die each year in the European Alps–and many more worldwide. Refining concepts for avalanche rescue means to optimize the procedures such that the survival chances are maximized in order to save the greatest possible number of lives. Avalanche rescue includes several parameters related to terrain, natural hazards, the people affected by the event, the rescuers, and the applied search and rescue equipment. The numerous parameters and their complex interaction make it unrealistic for a rescuer to take, in the urgency of the situation, the best possible decisions without clearly structured, easily applicable decision support systems. In order to analyse which measures lead to the best possible survival outcome in the complex environment of an avalanche accident, we present a numerical approach, namely a Monte Carlo simulation. We demonstrate the application of Monte Carlo simulations for two typical, yet tricky questions in avalanche rescue: (1) calculating how deep one should probe in the first passage of a probe line depending on search area, and (2) determining for how long resuscitation should be performed on a specific patient while others are still buried. In both cases, we demonstrate that optimized strategies can be calculated with the Monte Carlo method, provided that the necessary input data are available. Our Monte Carlo simulations also suggest that with a strict focus on the "greatest good for the greatest number", today's rescue strategies can be further optimized in the best interest of patients involved in an avalanche accident.

Highlights

  • In many countries the total number of avalanche victims did not increase during the last decade (e.g., [1]) despite a growing number of recreationists in snow-covered, mountainous terrain

  • Our Monte Carlo simulation was based on repeated random sampling, i.e. randomly taking parameter values according to their empirical probability distribution and calculating expectation values of interest with the sampled parameters

  • We focused on the Monte Carlo method for determining an optimal probing depth, other important considerations such as the search strategy are described by Genswein et al [13] who provide a detailed description of avalanche probing and the effect of spacing the probing strokes on the victim’s survival chances

Read more

Summary

Introduction

In many countries the total number of avalanche victims did not increase during the last decade (e.g., [1]) despite a growing number of recreationists in snow-covered, mountainous terrain. In some countries such as Canada, France, Norway, and Switzerland, the number of avalanche incidents with multiple victims has increased in recent years. At the same time the number of accidents with three or more fatalities has doubled as well [2]. This suggests that avalanche accidents where several persons require rescue and medical assistance are increasing. The first 35 min of an avalanche accident are most critical because the completely buried subjects with an obstructed airway suffocate quickly. At the same time rescue resources are often limited, making it impossible to provide the best standard care to all extricated and still buried subjects simultaneously. Strategies which help to allocate the limited resources to the most likely lifesaving tasks (i.e. triage strategies), are required [3]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.