Abstract
To develop a method for visualizing surgical textile implant (STI) with superparamagnetic iron oxides (SPIO), using magnetic resonance imaging (MRI). Therefore, positive-contrast inversion-recovery with on-resonant water suppression (IRON) was applied and its properties were evaluated in vitro. STI with different concentrations of SPIO integrated into the base material were produced. Imaging was performed on a clinical 1.5 Tesla scanner, using conventional balanced gradient echo sequences (SSFP), T2*-weighted sequences, and IRON-imaging. In vitro experiments were conducted in an agarose phantom. On MR-images, contrast-to-noise-ratios, and the dimensions of the implant were assessed. Conventional MRI exhibited SPIO-loaded STI as signal voids. Using IRON, the mesh was clearly exhibited hyperintensely with suppression of on-resonant background signals with a distinct differentiation to other sources of off-resonances. Concentrations of approximately 9 mg/g led to best positive contrast and highest contrast-to-noise-ratios using IRON. Depending on B0-orientation, phase encoding direction and the STI's SPIO-load, the IRON-signal showed a characteristic pattern and an overestimation of STI size up to 4.6 mm. The integration of SPIOs into the base material combined with IRON is a feasible approach to visualize STI with MRI. This method could help to identify mesh-related problems in time and to reduce the need for surgical revision.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.