Abstract
The efficiency of chemical exchange dependent saturation transfer (CEST) agents is largely determined by their water or proton exchange kinetics, yet methods to measure such exchange rates are variable and many are not applicable to in vivo measurements. In this work, the water exchange kinetics of two prototype paramagnetic agents (PARACEST) are compared by using data from classic NMR line-width measurements, by fitting CEST spectra to the Bloch equations modified for chemical exchange, and by a method where CEST intensity is measured as a function of applied amplitude of radiofrequency field. A relationship is derived that provides the water exchange rate from the X-intercept of a plot of steady-state CEST intensity divided by reduction in signal caused by CEST irradiation versus 1/omega(1)(2), referred to here as an omega plot. Furthermore, it is shown that this relationship is independent of agent concentration. Exchange rates derived from omega plots using either high-resolution CEST NMR data or CEST data obtained by imaging agree favorably with exchange rates measured by the more commonly used Bloch fitting and line-width methods. Thus, this new method potentially allows access to a direct measure of exchange rates in vivo, where the agent concentration is typically unknown.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.