Abstract
The paper is concerned with multiobjective sparse optimization problems, i.e. the problem of simultaneously optimizing several objective functions and where one of these functions is the number of the non-zero components (or the $$\ell _0$$-norm) of the solution. We propose to deal with the $$\ell _0$$-norm by means of concave approximations depending on a smoothing parameter. We state some equivalence results between the original nonsmooth problem and the smooth approximated problem. We are thus able to define an algorithm aimed to find sparse solutions and based on the steepest descent framework for smooth multiobjective optimization. The numerical results obtained on a classical application in portfolio selection and comparison with existing codes show the effectiveness of the proposed approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.