Abstract

Significant savings in the utility cost of batch plants can be obtained by heat integration. In this study, an integrated mathematical programming approach is developed for the determination of the cost optimal heat exchanger network for multipurpose batch chemical plants. A single step, interactive computer program (BatcHEN) which is developed for the determination of the campaigns (i.e. the set of products which can be produced simultaneously), the heat exchange areas of all possible heat exchangers in the campaigns and finally the heat exchanger network are all discussed. A matrix search algorithm is used for the determination of the campaigns. Heat exchange areas for the possible heat exchangers are found by solving a nonlinear optimization model with a grid search algorithm. Finally the heat exchanger network optimization is modeled as a mixed integer linear programming problem and then solved by the modeling and optimization software GAMS/XA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.