Abstract

Purpose – The purpose of this study was develop a computer-based cost prediction model for institutional building projects in Nigeria through the use of artificial neural network (ANN) technique. The back-propagation network learns by example and provides good prediction to novel cases. Design/methodology/approach – The input variables were derived from related works with modification and advices from professionals through a field survey. Two hundred and sixty completed project data were used for training and development of the ANN model. Back-propagation algorithm using the gradient descent delta learning rule with a learning coefficient of 0.4 was used. The input layer of the model comprised of nine variables; building height, compactness of building, construction duration, external wall area, gross floor area, number of floors, proportion of opening on external walls, location index and time index. Findings – Several multi-layer perceptron networks were developed with varying architecture from which the network 9-7-5-1 was selected. The performance of the model over the validation sample revealed that the model has a mean absolute per cent error of 5.4 per cent and average error of prediction of −2.5 per cent over the sample. The ANN model was considered to be effective for construction cost prediction. Research limitations/implications – The model may not be suitable for other building types because of the uniqueness of such facility even though significant difference is not anticipated for buildings such as commercial and residential. The models were evaluated based on the prediction errors; other means of evaluation were not used. Originality/value – The study thus provides a simple, yet effective means of predicting construction costs of institutional building projects in Nigeria using an ANN model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.