Abstract

To develop and validate an automated assessment of surgical performance (AASP) system for objective and computerized assessment of pelvic lymph node dissection (PLND) as an integral part of robot-assisted radical cystectomy (RARC) using console-feed videos recorded during live surgery. Video recordings of 20 PLNDs were included. The quality of lymph node clearance was assessed based on the features derived from the computer vision process which include: the number and cleared area of the vessels/nerve (N-Vs); image median color map; and mean entropy (measures the level of disorganization) in the video frame. The automated scores were compared to the validated pelvic lymphadenectomy appropriateness and completion evaluation (PLACE) scoring rated by a panel of expert surgeons. Logistic regression analysis was employed to compare automated scores versus PLACE scores. Fourteen procedures were used to develop the AASP algorithm. A logistic regression model was trained and validated using the aforementioned features with 30% holdout cross-validation. The model was tested on the remaining six procedures, and the accuracy of predicting the expert-based PLACE scores was 83.3%. To our knowledge, this is the first automated surgical skill assessment tool that provides an objective evaluation of surgical performance with high accuracy compared to expert surgeons' assessment that can be extended to any endoscopic or robotic video-enabled surgical procedure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.