Abstract

Computer viruses are major threats to Internet security and privacy, therefore many researchers are addressing questions linked to virus propagation properties, spreading models, epidemic dynamics, tipping points, and control strategies. We believe that two important factors – resource limitations and costs – are being overlooked in this area due to an overemphasis on power-law connectivity distributions of scale-free networks affecting computer virus epidemic dynamics and tipping points. The study show (a) a significant epidemic tipping point does exists when resource limitations and costs are considered, with the tipping point exhibiting a lower bound; (b) when interaction costs increase or usable resources decrease, epidemic tipping points in scale-free networks grow linearly while density curves decrease linearly; (c) regardless of whether Internet user resources obey delta, uniform, or normal distributions, they retain the same epidemic dynamics and tipping points as long as the average value of those resources remains unchanged across different scale-free networks; (d) it is possible to control the spread of a computer virus in a scale-free network if resources are restricted and if costs associated with infection events are significantly increased through the use of a throttling strategy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.