Abstract

ABSTRACT BACKGROUND: The aim of this study was to accurately establish the variability in the anatomy of the radius and ulna in the context of the design of an intramedullary nail for both bones METHODS: Forearm computed tomography scans were used to measure the specific internal and external anatomy of the radius and ulna in adult patients. Patients with fractures or dislocations involving either the radius and/or ulna were excluded RESULTS: A total of 97 scans, comprising 84% male and 16% female patients, were included. The mean radius length was 238.43±18.38 mm (95% CI 234.60-241.74 mm). The mean curvature was an arc with a radius of 561.43±93.49 mm (95% CI 543.09-580.78 mm). The smallest measurement of the canal width was 5.17 mm (95% CI 4.87-5.47 mm). The ulna showed a mean length of 259.90±19.88 mm (95% CI 255.89-263.91 mm). The smallest measurement of the canal width was 4.80±1.30 mm (95% CI 4.53-5.87 mm). The mean proximal shaft angle was 11.39±3.30° (95% CI 10.76-12.82° CONCLUSION: This computed tomography scan-based anthropomorphic study has identified novel anatomical features and associations of human forearm bones. This information will be used in the design and manufacture of anatomic intramedullary devices to better manage radius and ulna fractures or pathology Level of evidence: Level 4 Keywords: radius, ulna, anatomy, osteology, radius of curvature, intramedullary design

Highlights

  • The radius and ulna are commonly fractured bones,[1] but despite the frequency with which these bones are injured, studies that describe their anatomy are limited

  • The mean curvature was an arc with a radius of 561.43±93.49 mm

  • The ulna showed a mean length of 259.90±19.88 mm

Read more

Summary

Introduction

The radius and ulna are commonly fractured bones,[1] but despite the frequency with which these bones are injured, studies that describe their anatomy are limited. Studies by Beşer et al and others explored the anatomy of the ulna at the elbow joint and concluded that correctly measured angulations can help the design surgeon develop better prostheses and thereby maintain function of the elbow joint.[8,9,10,11,12] This study, was limited to analysis of cadaveric specimens. The aim of this study was to accurately establish the variability in the anatomy of the radius and ulna in the context of the design of an intramedullary nail for both bones

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call