Abstract

The Raman spectra of the (GaN)129, (SiO2)86, and (GaN)54(SiO2)50 nanoparticles were calculated using the molecular dynamics method. The spectrum of (SiO2)86 had three broad bands only, whereas the Raman spectrum of (GaN)129 contained a large number of overlapping bands. The form of the Raman spectrum of (GaN)54(SiO2)50 was determined by the arrangement of the GaN and SiO2 components in it. The nanoparticle with a GaN nucleus had a continuous fairly smooth spectrum over the frequency range 0 ≤ ω ≤ 600 cm−1, whereas the spectrum of the nanoparticle with a SiO2 nucleus contained well-defined bands caused by vibrations of groups of atoms of different kinds and atoms of the same kind.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.